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The Hall-effect-driven fast penetration of the magnetic field into a collisionless plasma is studied in a
two-dimensional geometry. The magnetic field penetrates in the form of a shock wave, leaving behind the
shock an electron vortex. If the plasma density varies by a large factor, the magnetic field penetrates only in a
narrow stripe at a certain value of the density. The specific location of that stripe depends on the degree of
resistivity of the cathode. The magnetic field can be nonlinearly enhanced during the penetration.
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PACS number~s!: 52.35.Mw, 52.35.Tc, 52.75.Kq, 47.65.1a

It is widely accepted that the early evolution of a mag-
netic field in high energy plasma devices, such as the plasma
opening switches and the z pinches, is governed by the Hall
effect. The penetration of the magnetic field depends on the
local profile of the ion densityn and on the curvature of the
magnetic field lines. A shocklike penetration is typical, the
velocity of the shock being of the order of the mean current
velocity, multiplied by a geometry-dependent factor
u'I /l2ne. Here I denotes the total current,e the electron
charge,n the ion density, andl the characteristic size of the
plasma. The respective energy dissipation is to be related to
the so-called electron magnetohydrodynamics~MHD! resis-
tance: the integrals of motion prohibit the electron flow with-
out losing a part of its energy, associated with the magnetic
field @1#. The phenomenon is quite well understood in the
case of a nonzero resistivity,vce.te

21.vAe /l, where
vce5eB0 /mc is the electron cyclotron frequency,te the
electron collision time,vAe5B0 /A4pmn the electron Al-
fven velocity,m the electron mass,c the speed of light, and
B0 the magnetic field at the plasma boundary cf@1,2#.

The integrals of motion of the electron MHD predict a
fast penetration in the collisionless limit, as well~assuming
that the cathode is resistive!; however, despite several at-
tempts@3–6#, the existing mathematical models have failed
to provide a consistent scenario of the process in this limit.
In review @1# it was argued that the excess of the magnetic
energy is transferred to the electron vortices, but there was a
complete uncertainty about the characteristics of these vorti-
ces. The main difficulty is that the process cannot be under-
stood in the framework of a one-dimensional model; the one-
dimensional solutions do exist@3#, but cannot be tailored
with realistic boundary conditions.

In the present paper we use a quasi-one-dimensional de-
scription of the shock penetration of magnetic fields. Unlike
the quasi-one-dimensional models used in Refs.@4–6#, we
secure the conservation of the vorticity, which is conserved
by the exact two-dimensional equations. It is shown that the
collisionless fast penetration takes place in the form of a
shock wave with the width of the front of order of the colli-
sionless skin depth. The value of the magnetic field behind
the shockBs is different from its value at the boundaryB0
and varies in space, so that the region behind the shock can
be considered as an electron vortex. The detailed shape of
the front of the shock, as well as the value of the magnetic

field behind the front and the region where the penetration
occurs, are determined by the boundary conditions at the
cathode.

We restrict ourselves to the two-dimensional geometry
where all quantities depend on the spatial coordinatesx and
y, the magnetic field is parallel to the z-axisB5Bẑ, and the
plasma fills the regionx.0. However, this should not be a
very limiting assumption. Indeed, it has been shown~c.f. @2#!
that the case of cylindrical geometry with circular field lines
can be reduced to the two-dimensional~2D! geometry with
straight field lines and modified, effective ion density. Fur-
thermore, it has been argued@7# that in the case of an arbi-
trary 3D geometry the penetration of the magnetic field into
plasma is qualitatively the same as in the 2D case. Also, in
order to avoid the delicate problem of boundary conditions at
the electrodes, they are considered sufficiently remote. Let
the plasma density profile be of the form

n5H nC , y,0

n~y!, 0,y,a

nA , y.a

,

where n(y) is a monotonically increasing function whose
characteristic space scale is much longer than the collision-
less skin depthc/vpe . We also assume the following in-
equalities for the space scalesl anda, the time scalet, and
the penetration speedu of the magnetic field:

vce
21!t!vci

21 , l,a!c/vpi , u@VA . ~1!

Herevpi denotes the ion plasma frequency,VA the Alfven
velocity, andl the characteristic scale of the density varia-
tions in thex direction. Then the ions can be considered
motionless and the current is created by a quasineutral flow
of electronsj52nev. Hence Ampere’s law allows us to
express the velocity of electrons as

v52
¹b3 ẑ

n
. ~2!

Here we have introduced the dimensionless quantities, where
the velocities are measured in the units of the electron Alfven
velocity vAe , the magnetic fieldb in the units of the mag-
netic fieldB0 at the plasma boundary, the ion densityn in the
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units of the densitynC in the vicinity of the cathode, the time
t in the units of the reciprocal electron gyrofrequency
vce

21 , and the space lengths in the units of the electron skin
depthc/vpe5Amc2/4pnCe

2. The electron equation of mo-
tion,

]v

]t
1~v¹!v52E2v3b2

¹Pe

n
,

upon applying curl to both sides and substituting the electric
field from Faraday’s law,2]b/]t5¹3E, can be rewritten
as

S ]

]t
1~v¹! DV50, V5

1

n Fb2¹S ¹b

n D G . ~3!

Here we have neglected the electron-ion collisions, which is
legitimate under the condition

vAete@l, ~4!

and used the ‘‘polytropic’’ approximation for the electron
pressurePe(x,y)5Pe@n(x,y)#. Equation ~3! should be
supplemented with boundary conditions. The first two
boundary conditions are rather natural,

bux5051, bux5`50, ~5!

the third one needs a detailed derivation. First of all we note
that in the regions outside the varying density profile one can
expect a stationary one-dimensional distribution of the mag-
netic field, defined by the simple collisionless skin effect. In
the case of a stationary solution, according to Eq.~3!, the
vorticity V is constant along the streamlinesb(x,y)5 const,
hence

b2
1

n

]2b

]x2
5n~y!V~x,y!, ~6!

where

V~x,y!5V0@b~x,y!#.

The particular form of the functional dependenceV0(b)
is defined by the processes at the cathode, which are not
considered here. Instead, we assume this function to be
specified.

As was indicated in paper@7#, in the case of a collision-
less cathode and a collisionless plasma, the fast penetration
will be suppressed. Indeed, the low collisionality of the cath-
ode means thatV0(b)!b. Then the system~5!, ~6! has a
quasi-one-dimensional solution at all values ofy and system
~3!, ~5! has a stationary solution.

Now we assume that the cathode is resistive so that in its
vicinity vAete&l, a condition opposite to~4!. Then, at least
in some regions of the plasma, we haveV0(b)'b/n. Equa-
tion ~6! has a solution, consistent with the boundary condi-
tions ~5! if, for all values ofbP(0,1), the following inequal-
ity is satisfied:

b2.2nP~b!, P~b![E
0

b

V~b8!db8. ~7!

Thus, starting from some certain valuey.y0 , there is no
solution to Eq.~6!. A more detailed definition ofy0 is given
later, see Eq.~8!. So we can expect that at larger plasma
densitiesn.n0[n(y0) the magnetic field penetrates into the
bulk, and the liney5y0 presents the lower boundary of the
shock ~see Fig. 1!. Quite naturally, the magnetic field does
not penetrate into the regiony.a with constant plasma den-
sity. In fact, the upper boundary of the shocky5y1 can be
located at even smaller values ofy, y1<a ~see below!.

Thus, the lower boundary of the shock can be found as the
smallest coordinatey0 , such that the equation

bS
252n~y0!P0~bS!, P0~b!5E

0

b

V0~b8!db8 ~8!

has a real solutionbS . Equivalently, the critical valuesn0
andbS can be defined by the system

bS
252n0P0~bS!, bS5n0V~bS!, ~9!

where it is assumed thatbS,1 ~the opposite situation will be
discussed below!. Then the boundary condition closing the
system~3!, ~5!, can be written as

V~x,y!uy5y0
5V0@b~x,y0!#. ~10!

We wish to find a shocklike solution of the system~3!,
~5!, and~10!.

Equation~3! can be simplified by neglecting the curvature
of the current lines. This approximation is justified in the
current layer at the front of the shock, under the assumption
that the width of the shock is much smaller than its curva-
ture. Switching from the independent variablesx andy to the
magnetic field b and the logarithm of the density
N5 ln(n/n0) we have

Sw ]

]b
1

]

]NDV50, V5e2NS b2
e2N

2

] j 2

]b D . ~11!

Here w5w(N)5u/(]n21/]y), u5u(y) is the velocity of
the shock in the direction of thex axis, j5]b/]j is the
current density,j the coordinate across the front, and the
time derivative ]/]t is substituted by
2u]/]x5u j(dj/dx)]/]b. The boundary conditions in the
new variables are

VuN505V0~b!, Vub5050, ~12a!

Vub5bs~N!5bse
2N, ~12b!

Pub5bs~y!5e2Nbs
2/2, ~12c!

wherebs(N) denotes the magnetic field behind the front@so
that bS5bs(0)#, and the potentialP(b,N) is given by Eq.
~7!. Conditions~12b! and~12c! express the continuity of the
vorticity and the current density, respectively. However, de-
pending on the behavior of the characteristics of Eq.~11!, the
above boundary conditions may be insufficient. If the elec-
trons behind the front move faster than the front@see Fig.
1~a! and Fig. 2~a!#, the following condition should be added:

V@bs~N!,N#5V0@bs~N!#, bs~N!,1, ~12d!
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V@bs~N!,N#5V@bs~N!,N1#, bs~N!.1, ~12e!

where we have used the notationN15N(y1).
The velocity of the frontw can be found from the bound-

ary condition~12c! by differentiating it with respect to the
coordinatey and taking into account conditions~12b! and
~7!,

w5bs/2, u5~bs/2!]n21/]y. ~13!

It is worth emphasizing that the boundary-value problem
~11! and ~12! does not depend on the density profilen(y).

Equation ~11! is integrated along the characteristics, as
shown in Fig. 2

V~b,N!5V0@b0~b,N!#,

b05b2
1

2E0
N

bs~N8!dN8, if b0~b,N!,bS , ~14a!

and

VS bs1E
N~bs!

N bs~N8!

2
dN8D 5V~bs!, if b0~b,N!.bS .

~14b!

HereN(bs) is the inverse of the functionbs(N). In the
expression~14a! the functionV0(b) is implied to be ex-
trapolated to the negative values ofb,0 to a constant
V0(b)50.

Still, our solution ~14! includes the unknown function
bs(N). The method to determine this function depends on
the behavior of the characteristics~Fig. 2!. Let us consider
some particular cases. If the front moves faster than the elec-
trons behind the front@dbs /dN,w; Fig. 2~b!#, one can in-
troduce the auxiliary functionbs0(N)5b0@bs ,N(bs)#, so
that

bs~N!5bs0~N!1E
0

Nbs~N8!

2
dN8. ~15!

Formula~15! can be rewritten in a differential form as

FIG. 1. Qualitative picture of the penetration. Darker regions correspond to stronger magnetic fields. The current created behind the shock
can be faster~a! or slower~b! than the shock. Besides, if the plasma density varies strongly~a!, the magnetic field penetrates only in a thin
stripe at certain values of the density.

FIG. 2. A sketch of characteristics~bold dotted lines! of Eq.
~11!. The exact Eq.~3! enables us to continue the characteristics
beyond the shock front~thin dotted lines!. The characteristics origi-
nating at the cathode are designated byC, and those terminating at
the anode, byA. H is the integral~19!.
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~d/dN!@bsexp~2N/2!#5exp~2N/2!dbs0 /dN.

Solution ~14a! can be used to findP(bs)5P0(bs0), so that
the boundary condition~12c! yields

exp~2N/2!5F~bs0!, F~b!5dA2P0~b!/db. ~16!

Equation ~16! defines implicitly the functionbs0(N). Fi-
nally, the functionbs(N) is found from the boundary condi-
tion ~12b!:

bs5exp~N!V0~bs0!. ~17!

If the front is slower than the electrons behind it
dbs /dN.w the unknown function can be found from the
boundary conditions~12b!, ~12d!, ~12e!. The case of
bs(N),1 immediately results in

V0@bs~N!#exp~N!5bs~N!. ~18!

If the opposite inequality holds, there are two different
regimes of penetration, depending on the extent of the
plasma density variation. The electrons caught by the shock
have never been at the resistive cathode and thus carry zero
vorticity. In Fig. 2, these electrons correspond to the charac-
teristics, originating from the bottom. Moving along the front
towards the abode, the electrons ‘‘climb up’’ towards higher
values ofb ~Fig. 2!. In the case of a strong density variation,
there is a pointN5N1 where they attain the valueb51.
Thus, at that point, the electrons of zero vorticity occupy the
whole interval (bP@0,1#); further, they continue their mo-
tion towards the anode at the plasma boundary. Conse-
quently in the regiony.y1 there will be the collisionless
skin layerb5exp(2x). The other electrons (b.1) turn back
towards the cathode, and start rotating in the electron vortex
@Fig. 1~a!#. The upper boundary of the shock is then found
from the condition

H5E
0

N1bs
2
dN51. ~19!

In other words, the pointsN50, b50 andN5N1 , b51
lie on the same characteristic~Fig. 2!.

In the case of weak density variations, Eq.~19! cannot be
satisfied. Indeed, upon substitutingN15 ln(nA), we obtain
H,1. Then the shock penetrates in the whole region of vary-
ing density, so thaty15a.

In both cases, the desired functionbS(N) can be found
from the equationbs5exp(N2N1)V(bs,N1) @which follows
from Eqs.~12b! and~12e!#, where the functionV(bs ,N1) is
to be found from the expressions~14! and ~18!. Thus the
function bs(N) can be constructed step by step towards
higher values of the magnetic field, as is shown in Fig. 1~b!.
The procedure is rather sophisticated and is not presented
here. Still, Eq.~19! provides a simple and useful estimate of
the upper boundary of the shockN1 . For bs'1 we obtain
H'N15 ln@n(y1)/n(y0)#. In the case of strong density varia-
tions, the upper boundary is given by the conditionH51,
hence

n~y1!'en~y0!. ~20!

In other words, the front of the shock will terminate before
reaching the liney5a if ln @n(a)/n(y0)#*1. In the plasma
opening switches, the overall density variation can be more
than an order of magnitude. In that case, the magnetic field
will penetrate only into a narrow layer of the plasma in the
vicinity of the cathode. The width of the layer is given by the
estimate~20!.

The problem is more complicated, if Eq.~8! formally
yieldsbS51. In this case, the formally obtained value of the
lower boundary of the shocky0* would contradict the
boundary conditions~12b! and ~12c!. Here the real lower
boundary of the shock is somewhat closer to the cathode, and
the penetrating magnetic fieldbS is larger than the magnetic
field at the plasma boundarybS.1. The lower boundary of
the shock is to be found from the system~9!, where the
extrapolated~to the regionb.1) functionV0(b) should sat-
isfy the following functional equation:

V0~b!5V0~b2H !, if dbs /dN.0,

V0~bs!5bs , if dbs /dN,0.

In practice it may be difficult to solve this equation. How-
ever, it is possible to show that the shocklike solution does
exist in that case as well. A possible scheme of currents is
shown in Fig. 1~b!.

As an illustration, we present the explicit solution for the
model vorticity function

V5b1Q~b2b2!, b1 ,b2,1,

and the density profile

n~y!5exp~ay!.

Then in the region of the shock we have

y0&y&y1 , y05a21ln~2b2 /b1!, y15y02 ln~b2!,

and the magnetic field is given by

b5b1n~y!H f @~2x2tb1a!/2An~y!#, y0&y&y1 ,

f @~y02y!/An~y0!#, y'y0 ,

f @~y2y1!/An~y!#, y'y1,

where the notation is introduced,

f ~x!5H 12exp~x!, x,0

exp~2x!, x.0
.

At the plasma boundary~i.e., in the region 0,x&1), there is
a simple collisionless skin layer.

Thus we have proposed a simple model capturing essen-
tial features of 2D nonlinear collisionless penetration of the
magnetic field into electron MHD plasmas. The magnetic
field penetrates in the form of a growing electron vortex with
a self-consistent profile of the magnetic field inside the vor-
tex . The location and detailed structure of the vortex depend
on the boundary conditions on the cathode. In the case of
strong ion density variations, the vortex is localized over an
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octave of the density variation. So, the magnetic field pen-
etrates only in a narrow stripe in the vicinity of the cathode.
The theory also predicts a nonlinear enhancement of the
magnetic field.

The main part of this paper has been prepared owing to
the hospitality of the Centre de Physique The´orique, Ecole
Polytechnique. I am grateful to L.I. Rudakov, M.N. Bussac,
and J.F. Luciani for stimulating and useful discussions.
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